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Introduction

The main goal of this report was to find a lower bound on the number of
operations required to evaluate an l-degree isogeny between elliptic curves.
The following chapters mirror the path we took in learning.

In the first Chapter 1, we very briefly introduce some algebraic geome-
try theory in order to actually define elliptic curves and their isogenies. We
studied the book The Arithmetic of Elliptic Curves by Silverman which pro-
vided us with a good algebraic understanding of these mathematical objects,
and following up with the book Mathematics of Public Key Cryptography by
Galbraith for other insights.

We then were able to understand “CSIDH: An Efficient Post-Quantum
Commutative Group Action” by Castryck et al. as well the surface variant
of CSIDH. These papers are presented in Chapter 2. They introduced us to
a concrete application of isogeny based cryptography, and highlighted the
importance of finding lower bounds on their evaluation.

In Chapter 3, we take a deeper dive into the structure of the so-called
kernel polynomials of isogenies. These object appear naturally when consid-
ering the structure of formulas which describe isogenies. At the same time,
Bernstein et al. published Faster computation of isogenies of large prime
degree in which they present a new way to evaluate them, therefore intro-
ducing a lower upper bound on the number of operations required to evaluate
a kernel polynomial. In parallel, we started exploring the field of algebraic
complexity theory, first through papers by Strassen and Schnorr and later
studying the book Algebraic Complexity Theory by Bürgisser, Clausen, and
Shokrollahi. This turned out to be invaluable as we realized our goal could
be achieved using the theory of straight-line programs and finite dimensional
machines.

Chapter 4 is devoted to laying out the theory relating to this subject.
We used the framework of Complexity and Real Computation by Blum et al.
since we came across the paper “On the intractability of Hilbert’s Nullstel-
lensatz and an algebraic version of P vs. NP” by the co-authors Shub and
Smale and it allowed us to maintain throughout the rest of the report.

The following Chapter 5 presents in detail the main theorem from this
latter paper, which connects the problem of computing k! and the algebraic

version of P
?
= NP. It proves that if the former is hard, the the latter must

be false.
The final Chapter 6 contains our main contribution in which we adapt

the idea from Chapter 5 to the evaluation of kernel polynomials. We succeed
in showing that if evaluating the kernel polynomial is easy in C, then it must
be true that PC = NPC, therefore, proving that a superlogarithmic lower
bound is most likely impossible.



Chapter 1

Elliptic Curves & Isogenies

In this chapter we introduce some mathematical background on elliptic
curves and their isogenies.

This section is heavily inspired by the works of Galbraith and Silverman
in Mathematics of Public Key Cryptography [10] and The Arithmetic of
Elliptic Curves [15]. While we mostly cite Galbraith, we originally studied
the theory of elliptic curves from the perspective of Silverman.

1.1 Elliptic Curves

Throughout this chapter, we suppose K is a perfect field contained in a fixed
algebraic closure K̄.

We assume the reader is familiar with basic notions from algebraic ge-
ometry concerning elliptic curves and can therefore skip this chapter. We
only recall the basic definitions which we reproduce from [10]. They are
included here as reference, and we refer to the cited works which contain
more insight.

We first start by defining affine spaces and the different objects that they
induce.

Definition 1.1 (Affine n-space [10, Section 5.1]). The affine n-space over
K is defined as An(K) = Kn. The affine line and affine plane are defined
as A1(K) = K1 and A1(K) = K1 respectively.

3



4 CHAPTER 1. ELLIPTIC CURVES & ISOGENIES

Definition 1.2 (Affine algebraic set [10, Definition 5.1.1]). Define

V (S) =
{
P ∈ An(K̄) : f(P ) = 0 for all f ∈ S

}
for a set S ⊆ K[x1, . . . , xn].

If S = {f1, . . . , fm} then we write V (f1, . . . , fm) for V (S). An affine
algebraic set is a set X = V (S) ⊂ An where S ⊆ K[x1, . . . , xn].

If K ′/K is an algebraic extension, the K ′-rational points of X = V (S)
are

X(K ′) = X ∩ An(K ′) =
{
P ∈ An(K ′) : f(P ) = 0 for all f ∈ S

}
Definition 1.3 (Ideal [10, Definition 5.1.13]). The ideal over K of a set
X ⊆ An(K̄) is

IK(X) =
{
f ∈ K[x1, . . . , xn] : f(P ) = 0 for all P ∈ X(K̄)

}
Define I(X) = IK̄(X). An algebraic set X is defined over K if I(X) can

be generated by elements of K[x1, . . . , xn].

Definition 1.4 (Affine coordinate ring [10, Definition 5.1.18]). The affine
coordinate ring over K of an affine algebraic set X ∈ An defined over K is
defined as

K[X] = K[x1, . . . , xn]/IK(X).

Most of the above definitions match their counterparts in projective
spaces closely. We define them next.

Definition 1.5 (Projective space [10, Definition 5.2.1]). The projective
space over K of dimension n is defined as

Pn(K) =
{

(a0 : a1 : . . . : an) ∈ An+1 : (a0 : a1 : . . . : an) 6= (0 : . . . : 0)
}

where
(a0 : . . . : an) = {(λa1, . . . , λan) : λ ∈ K?}

is the equivalence class of (a0 : . . . : an).

Definition 1.6 (Projective algebraic set [10, Definition 5.2.6]). Let f ∈
K[x0, . . . , xn] be a homogeneous polynomial. A point P = (x0, . . . , xn) ∈
Pn(K) is a zero of f if f(x0, . . . , xn) = 0. Let S be a set of polynomials and
define

V (S) =
{
P ∈ Pn(K̄) : P is a zero of f for all homogeneous f ∈ S

}
.

A projective algebraic set is a set X = V (S) ⊆ Pn(K̄) for some S ⊆
K[x0, . . . , xn]. Such a set is also called a projective K-algebraic set. For
X = V (S) and K ′/K an algebraic extension of K we define

X(K ′) =
{
P ∈ Pn(K ′) : f(P ) = 0 for all homogeneous f ∈ S

}
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Definition 1.7 (Varieties [10, Definition 5.3.1]). An affine K-algebraic set
X ⊆ An is K-reducible if X = X1∪X2 for X1, X2 two K-algebraic sets such
that X1, X2 6= X. It is K-irreducible if there exists no such decomposition,
and geometrically irreducible if X is K̄-irreducible. An affine variety over
K is a geometrically irreducible affine K-algebraic set defined over K.

A projective K-algebraic set X ⊆ Pn is K-irreducible (resp. geometri-
cally irreducible) if X 6= X1 ∪X2 for X1, X2 two K-algebraic sets such that
X1, X2 6= X (resp. projective K̄-algebraic sets). A projective variety over
K is a geometrically irreducible K-algebraic set defined over K.

Definition 1.8 (Function fields [10, Definition 5.4.1]). Let X be an affine
variety defined over K. The function field K(X) is the set

K(X) = {f1/f2 : f1, f2 ∈ K[X], f2 /∈ IK(X)}

We consider this set under the equivalence class

f1/f2 ≡ f3/f4 ⇐⇒ f1f4 − f2f3 ∈ IK(X)

If X is a projective variety defined over K, then its function field is

K(X) = {f1/f2 : f1, f2 ∈ K[X] homogeneous of same degree , f2 /∈ IK(X)}

Elements of K(X) are called rational functions under the same equiva-
lence relation for projective spaces.

For the next definition, we refer to [15, Silverman] for the definition of
regularity.

Definition 1.9 (Rational maps [10, Definition 5.5.1]). Let X be an affine
or projective variety defined over K, and Y an affine variety in An over K.
Let φ1, . . . , φn ∈ K(X). A map φ : X → An of the form

φ(P ) = (φ1(P ), . . . , φn(P ))

is called regular at a point P ∈ X(K̄) if all φi are regular at P . A rational
map φ : X → Y defined over K is a map of the same form such that, for all
P ∈ X(K̄) for which φ is regular at P , then φ(P ) ∈ Y (K̄).

Let X be an affine or projective variety defined over K, and Y a projec-
tive variety in Pn over K. Let φ0, . . . , φn ∈ K(X). A map φ : X → Pn of
the form

φ(P ) = (φ0(P ) : . . . : φn(P ))

is called regular at a point P ∈ X(K̄) if there is a function g ∈ K(X) such
that all gφi are regular at P , and for some i one have (gφ)(P ) 6= 0. A
rational map φ : X → Y defined over K is a map of the same form such
that, for all P ∈ X(K̄) for which φ is regular at P , then φ(P ) ∈ Y (K̄).
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Definition 1.10 (Morphism [10, Definition 5.5.12]). Let X,Y be varieties
over K and let U ⊆ X be open. A rational map φ : U → Y over K which
is regular at every point P ∈ U(K̄) is called a morphism over K.

Definition 1.11 (Curve [10, Definition 7.1.17]). A curve is a projective
non-singular variety of dimension 1. A plane curve is a curve given by an
equation F (x, y, z) = 0 and is the set V (F (x, y, z)) ⊆ P2, where V (F ) is the
variety defined by F .

Definition 1.12 (Weierstrass equation [10, Definition 7.2.1]). Let a1, . . . , a6 ∈
K.

A Weierstrass equation is a projective algebraic set E over K given by

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3.

The affine Weierstrass equation is

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6z.

Definition 1.13 (Point at infinity [10, Definition 7.2.5]). Let E be a Weier-
strass equation over K. The point (0 : 1 : 0) ∈ E(K) is denoted OE and is
called the point at infinity.

In some cases, we may denote this point as ∞.

Definition 1.14 (Elliptic curve [10, Definition 7.2.8]). An elliptic curve is
a curve given by a non-singular Weierstrass equation.

Definition 1.15 (Group law [10, p. 9.1]). Let E be an elliptic curve over
a field K given by a non-singular affine Weierstrass equation. This curve
defines a group with neutral element OE .

Definition 1.16 (Isogeny [10, Definition 9.2.2]). Let E1, E2 be an elliptic
curve over a field K given by a non-singular affine Weierstrass equation, and
let φ : E1 → E2 be a morphism of varieties such that φ(OE1) = OE2 , Then
φ is an isogeny. The kernel of φ is the set ker(φ) = {P ∈ E1 : φ(P ) = OE2}.
The degree of φ is the degree of the morphism. Define the sets HomK(E1, E2)
and EndK(E1) as the sets of isogenies from E1 to E2 or itself respectively.



Chapter 2

CSIDH & CSURF

In this chapter we discuss the CSIDH and CSURF cryptography systems
discovered by Castryck et al. in [7] These papers inspired us to look into
the computational aspect of evaluating isogenies, since the speed of the
cryptographic protocol depends on them.

Before introducing the constructions, we briefly mention hard homoge-
neous spaces.

2.1 Hard Homogeneous Spaces

A useful mathematical structure in cryptography are the so called Hard
Homogeneous Spaces (HHS) introduced by Jean-Marc Couveignes. These
spaces formalize the idea of the discrete logarithm problem, and are imple-
mented for isogenies in CSIDH.

Definition 2.1 (Homogeneous Space [9], [7, Definition 1]). Let G be a
commutative group. A Homogeneous Space X for G is a finite set X of
same cardinality S = #X = #G on which G acts transitively and regularly.

Example. Homogeneous Spaces

• Let G be a commutative group and X = G. Then G acts on itself.

• Let X be an affine space, and G its vector space.

For cryptography, we are interested in hard homogeneous spaces:

7
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Definition 2.2. A hard homogeneous spaces is a homogeneous space in
which the following operations are easy,

• Computing the group operation in G.

• Sampling randomly from G with (close to) uniform distribution.

• Decide validity and equality of a representation of elements of X.

• Computing the action of a group element g ∈ G on some x ∈ X.

and the following must be hard

• Given x1, x2 ∈ X, find g ∈ G such that g ◦ x1 = x2.

• Given x1, x2, y ∈ X such that x2 = g ◦ x1, find y′ = g ◦ y.

The next example constitutes a hard homogenous space in some situa-
tions.

Example (Discrete Logarithm). Let S be the set of generators of a cyclic

group C and G =
(
Z|C|

)×
its automorphism group. G acts on S by expo-

nentiation. This setup constitutes in some situations a hard homogeneous
space (depending on the order of C). The group action is then g ◦ c = gc.

Unfortunately, these kind of setups are vulnerable to an attack using
Shor’s algorithm on quantum computers.

These homogeneous spaces allow us to establish a Diffie-Hellman key ex-
change because the group action is commutative. The CSIDH construction
presented next is one of them.
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2.1.1 CSIDH

The idea in CSIDH is to define a group action over a set of isomorphism
classes of elliptic curves. It uses a group representing isogenies acting on a set
of supersingular elliptic curves given in Montgomery form. The usefulness
of this construction for cryptography comes from the fact that there is no
known way to efficiently obtain the structure of the group acting on the
curves.

We start with some definition and notations from [7].

Definition 2.3. The Frobenius endomorphism π ∈ Endp(E) of an elliptic
curve E over Fp for p ≥ 5 satisfied a characteristic equation

π2 − tπ + p = 0

where t ∈ Z is the trace of Frobenius. It is also defined more generally over
varieties V ⊂ Pn as the map π : V → V, π = [Xp

0 , . . . , X
p
n] [15].

The curve E is supersingular if and only if t = 0 and we have π2 = −p.
The ring of Fp-rational endomorphisms Endp(E) of E is an order O in

the imaginary quadratic field K = O ⊗Z Q ∼= Q(
√

∆) where ∆ = t2 − 4p.
Note that O always contains π so it always contains Z[π].

An invertible ideal a ∈ O defines an elliptic curve φa : E → E/a of
degree N(a) [18]. The set of these invertible ideals is cl(O).
Ep(O, π) defines the set of Fp-isomorphism classes of elliptic curves E

over Fp for which Endp(E) ∼= O.

We can now define the group action concretely with the following theo-
rem.

Theorem 2.1 ([18, Theorem 4.5]).
Let O be an order in an imaginary quadratic field, and π ∈ O such that
Ep(O, π) is non-empty. Then the ideal class group cl(O) acts freely and
transitively on the set Ep(O, π) via the map:

cl(O)× Ep(O, π) → Ep(O, π)
([a], E) 7→ E/a

in which [a] is chosen as an integral representative.
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We now explore how to compute these group action. As we will see in
the next chapter, we can compute an isogeny given a generator P of the
kernel.

In this section, we consider a prime p = 4 · l1 · · · ln− 1 where li are small
distinct odd primes larger than 3. We fix E0 : y2 = x3 + x over Fp which
is supersingular since p ≡ 3 mod 4. The Frobenius endomorphism satisfies
π2 = −p so its Fp-endomorphism ring is an order in the imaginary quadratic
field Q(

√
−p). In particular, Endp(E0) = Z[π].

We first note from [14] that cl(O) is a finite abelian group with size
# cl(O) ≈

√
|∆|. Since our curve is supersingular, # cl(O) ≈ √p because

|∆| =
√

4p. The best known algorithm for computing the structure of this
group is sub-exponential time, and therefore impractical in the real world.

From [11, Proposition 9.5.2 and 9.5.3], any element of the class group
can be represented as a product of small prime ideals.

a =
∏
i

leii

Since the group is abelian, we only need to find the isogeny for each indi-
vidual ideal l and compose them together.

We have the ideal liO = li l̄i where li = (li, π− 1) and l̄i = (li, π+ 1) The
kernel of φl is the intersection of the kernel of the multiplication by li map
[li] and the kernel of π − 1. In other words,

P ∈ kerφl ⇐⇒ [li]P =∞, π(P ) = P

The last condition implies that the point must lie in the curve defined over
Fp.

The kernel of l̄i is defined as the points Q of order li defined over Fp2
but not Fp and such that π(Q) = −Q.

Therefore computing the isogeny φa : E → E/a where a =
∏
i l
ei
i requires

only finding points of order li in the base curve, and applying the Vélu
formula for each factor li.

The following proposition shows us what the form of the images of these
isogenies look like.

Proposition 2.2 ([7, Proposition 8]).
Let p ≥ 5 be a prime such that p ≡ 3 mod 8 and let E/Fp be a supersingular
elliptic curve. Then Endp(E) = Z[π] if and only if there exists A ∈ Fp such
that E is Fp-isomorphic to the curve

EA : y2 = x3 +Ax2 + x.

Moreover, if such an A exists then it is unique.
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In practice, since the ideals l1, . . . , ln are known, an element a would be
represented only by the exponents (e1, . . . , en). It is thus easy to compute the
group action on an elliptic curve. Moreover, it is also easy to compute the
coefficient A of the resulting Montgomery curve, and isogeny computations
are easier since we can only consider the x coordinate of the isogeny. The
security of this system therefore rests on the assumption that computing the
isogeny between two curves is hard.

An implementation of Diffie-Hellman key exchange can be explored in
more detail in [7, Section 6].

2.2 CSIDH on the surface

After the introduction of CSIDH, Castryck and Decru came up with an al-
ternative implementation called “CSIDH on the Surface” [6] which allows
for primes p such that p ≡ 7 mod 8. For curves defined over a finite field
Fp with this property, we can create a similar construction when the endo-
morphism ring the Fp-isomorphism classes of the curves is Z[(1 +

√
p)/2].

One difference is that these curves will have the form

EA : y2 = x3 +Ax− x.

The computation of isogenies over these curves is very similar, and only
requires a few sign changes. Moreover, the prime 2 splits in Q(

√
−p) as

(2) = (2, (
√
−p − 1)/2)(2, (

√
−p + 1)/2), and therefore an element of cl(O)

contains as factor a prime ideal (2, (
√
−p − 1)/2). This is interesting since

formulas for computing degree-2 isogenies in this context are much simpler
and greatly improve the performance of the construction.

We do not dive further into this paper however, as the ideas are very
similar to the ones from CSIDH. Both of these construction highlight the
importance of computing isogenies. This inspired us to look into more detail
at the computational cost of evaluating such an isogeny. In particular, we
tried to show the existence of a lower bound on the number of operations
required.
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Chapter 3

Computation Bounds for
Isogeny Evaluation

In this chapter, we will explore in more detail how to compute isogenies.
The first section develops the formula for isogenies by exploiting properties
of elliptic curves. Initially, we were hoping to obtain a closed form of a special
function we often call kernel polynomial. Unfortunately, we will see that it
not possible. Instead, we present a new method for evaluating isogenies by
Bernstein et al., providing an upper bound on the number of operations
required to evaluate isogenies.

Theorem 3.1 ([10, Theorem 9.7.5 on p. 179]).
Given two curves over K:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

E′ : Y 2 + a′1XY + a′3Y = X3 + a′2X
2 + a′4X + a′6

Let φ : E → E′ be an isogeny of elliptic curves over K.

We can express φ as:

φ(x, y) = (φ1(x), yφ2(x) + φ3(x))

where

2φ3(x) = −ã1φ1(x)− ã3 + (a1x+ a3)φ2(x)

In particular, if φ is separable, we have

φ2(x) = φ1(x)′ = dφ1(x)/dx

φ(x, y) = (φ1(x), cyφ1(x)′ + φ3(x))

2φ3(x) = −ã1φ1(x)− ã3 + c(a1x+ a3)φ1(x)′

for some c ∈ K?

13
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We notice that given the function φ1(x), we can easily compute the full
isogeny φ. The following theorem and corollaries encapsulates Vélu’s work
in [17]. It allows us to give an more succint form for φ1.

Theorem 3.2 ([10, Theorem 25.1.6 on p. 547] [17]).
Let E be an elliptic curve over K defined by the polynomial

F (x, y) = x3 + a2x
2 + a4x+ a6 −

(
y2 + a1xy + a3y

)
= 0.

Let G be a finite subgroup of E(K). Let G2 be the set of points in
G− {OE} of order 2, and let G1 be such that

#G = 1 + #G2 + 2#G1, G = {OE} ∪G2 ∪G1 ∪ {−Q : Q ∈ G1} .

Write

Fx =
∂F

∂x
= 3x2 + 2a2x+ a4 − a1y, Fy =

∂F

∂y
= −2y − a1x− a3

For a point Q = (xQ, yQ) ∈ G1 ∪G2 define the quantities

u(Q) = (Fy(Q))2 = (−2y − a1x− a3)2

t(Q) =

{
Fx(Q) if Q ∈ G2

2Fx(Q)− a1Fy(Q) if Q ∈ G1.

Note that if Q ∈ G2 then Fy(Q) = 0.
Define

t(G) =
∑

Q∈G1∪G2

t(Q), w(G) =
∑

Q∈G1∪G2

(u(Q)− xQt(Q)) .

and set

A1 = a1 A2 = a2

A3 = a3 A4 = a4

A6 = a6 −
(
a2

1 + 4a2t(G)− 7w(G)
)
.
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Then the map φ : (x, y) 7→ (X,Y ) where

X = x+
∑

Q∈G1∪G2

t(Q)

x− xQ
+

u(Q)

(x− xQ)2

Y = y −
∑

Q∈G1∪G2

[
u(Q)

2y + a1x+ a3

(x− xQ)3 + t(Q)
a1(x− xQ) + y − yQ

(x− xQ)2

+
a1u(Q)− Fx(Q)Fy(Q)

(x− xQ)2

]

is a separable isogeny from E to

E′ : Y 2 +A1XY +A3Y = X3 +A2X
2 +A4X +A6

with kernel G.

This theorem reveals a strong like between an isogeny and its kernel.
In fact, the following corollary states that we can obtain an isogeny whose
kernel is G for any finite subgroup of points.

Corollary 3.2.1 ([10, Corollary 25.1.7 on p. 550]).
Let E be an elliptic curve defined over K and G a finite subgroup of E(K)
that is defined over K. Then there is an elliptic curve Ẽ = E/G defined
over K and an isogeny φ : E → Ẽ defined over K with ker(φ) = G.

Moreover, the form given in Theorem 3.2 allows us to write the isogeny
more succinctly as a rational function, as well as bounding the degrees.

Corollary 3.2.2 ([10, Corollary 25.1.8 on p. 550]).
Let φ : E → Ẽ be a separable isogeny of odd degree l between elliptic curves
over K. Write φ(x, y) = (φ1(x), φ2(x, y)), where φ1(x), φ2(x, y) are rational
functions. Then φ1(x) = u(x)/v(x)2, where deg u = l and deg v = (l− 1)/2.
Also, φ2(x, y) = (yw1(x) + w2(x))/v(x)3, where degw1 ≤ 3(l − 1)/2 and
degw2 ≤ (3l − 1)/2.
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The following theorem gives a more explicit representation of the rational
function defining the isogeny. It defines the polynomial ψ which we call
the kernel polynomial since it is defined by the points in the kernel of the
isogeny. Computing an isogeny depends heavily on the computation of this
polynomial.

Theorem 3.3 ([10, Lemma 25.1.16 on p. 551]).
Let E be an elliptic curve defined over K:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

Let G be a finite subgroup of E(K̄) of odd order 2d+1. Let G1 ⊂ G such
that #G1 = d and G = {OE} ∪G1 ∪ {−P |P ∈ G1}. The kernel polynomial
of G is given by:

ψ(X) =
∏
P∈G1

(X − x(P ))

whose roots are the x coordinates of elements in G1.
Define b2 = a2

1 + 4a2, b4 = 2a4 + a1a3 and b6 = a2
3 + 4a6. Then there

exists an isogeny φ : E → Ẽ with kerφ = G, of the form:

φ(X,Y ) 7→ (φ1(X), φ2(X,Y )) =

(
A(X)

ψ(X)2 ,
B(X,Y )

ψ(X)3

)
(3.1)

By letting p(X) := 4X3 + b2X
2 + 2b4X + b6 and c1 :=

∏
P∈G1

x(P ), the
function for the first coordinate of the isogeny in 3.1 becomes

φ1(X) = (2d+ 1)X − c1 − p(X)

(
ψ(X)′

ψ(X)

)′
− p(X)′

2

(
ψ(X)′

ψ(X)

)
. (3.2)

Formula 3.2 shows that the isogeny is actually completely defined by its
kernel polynomial. Indeed, evaluating the isogeny requires the evaluation of
the derivatives of ψ, and c1 = ±ψ(0).

Our interest lies in finding a lower bound bound on the number of oper-
ations required to simply evaluate an isogeny. Interestingly, a Theorem by
Baur and Strassen in [1], which we found in [5, 7.7 Derivative Inequality],
proves that the number of operations required to evaluate the derivative of
a function is at most 3 times the number needed for the evaluation of the
function itself. Therefore, we can evaluate ψ, its first and second derivative,
as well as c1 in time proportional to that of just evaluating ψ.

Thus, proving a lower bound on the number of operations required to
evaluate an isogeny comes down to finding one for its kernel polynomial.
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As we started our research, we thought it might be possible to write
the kernel polynomial as a function of the isogeny. Observing formula 3.1,
it would seem like ψ(X)2 = A(X)φ1(X). Unfortunately, if we develop the
terms appearing in formula 3.2 we observe that A(X) is also implicitly de-
fined by ψ. The kernel polynomial ψ does not actually appear explicitly in
the formula for the x-coordinate of the isogeny.(

ψ(X)′

ψ(X)

)
=
∑
P∈G1

1

(X − x([s]P ))(
ψ(X)′

ψ(X)

)′
=
∑
P∈G1

−1

(X − x([s]P ))2

In the next section, we present a new upper bound using a method
discovered by Bernstein et al. in [2]. It can evaluate a degree-l isogeny in
time Õ(

√
l) for elliptic curves defined over Fq.

3.1 Computing the kernel polynomial in Õ(
√
l)

This section presents the paper Faster computation of isogenies of large
prime degree by Bernstein et al. Therein, the authors adapt a baby-step,
giant-step-type algorithm to the context of elliptic curves to speed up the
computation of the kernel polynomial ψ. Obviously, we could compute ψ
in time Õ(l) by simply computing all {x(P ), x([2]P ), . . . , x([(l − 1)/2]P )}
iteratively. Looking at the latter, we wonder wether it would be possible
to obtain some of the values by using the ones previously computed, rather
than compute all the multiples of P .

We first generalize the problem by considering the evaluation of a similar
polynomial in Fq of the form

hS(X) =
∏
s∈S

(X − f([s]P )) ∈ Fq[X]

where q is a prime power, S is a finite subset of Z, P a generator of a cyclic
group G, and f : G → Fq is a function.

We first consider a simpler case of h to demonstrate the idea for reduc-
ing the number of steps required for evaluation. Let G be a cyclic group
generated by an n-th root of unity P = ζ of Fq[X], f([s]P ) = ζs and
S = {0, . . . n− 1}. Suppose also that n = ab where a, b ∈ N.

hS(X) =
∏
s∈S

(X − f([s]P )) =

n−1∏
k=0

(X − ζk) =

a−1∏
i=0

b−1∏
j=0

(X − ζi·b+j)
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The algorithm we construct relies on two polynomials B,G which can
be thought of as the baby-step and giant-step polynomials respectively.

G(Y ) =

a−1∏
i=0

(X − Y · ζi·b) ∈ Fq[X][Y ]

B(Y ) =
b−1∏
j=0

(Y − ζj) ∈ Fq[Y ]

Recall that if p, q are univariate monic polynomials with coefficients in

an integral domain, the resultant Res(p, q) is
∏dp
i=1 q(αi), where dp is the

degree of p, and the αi are the roots of p. This tool allows us to combine
the polynomials B,G by evaluating G in the b roots of B. We therefore
need only to compute the baby steps

{
ζ1, ζ2, . . . , ζb−1

}
and the giant steps{

ζb, ζ2b, . . . , ζ(a−1)b
}

, for a total of O(a+ b) calls to f .

ResY (B,G) =

b−1∏
j=0

G(ζj) =

b−1∏
j=0

a−1∏
i=0

(X − ζj · ζi·b) =

b−1∏
j=0

a−1∏
i=0

(X − ζi·b+j)

=
n−1∏
k=0

(X − ζk) = h(X) ∈ Fq[X]

Note that ResY (B,G) evaluates the resultant of B,G viewed as polynomials
in the Y variable, so the result is another polynomial in the X variable.

We can generalize this example if we suppose that S = (I + J) ∪ K,
where I, J,K are finite subset of Z such that (I+J)∩K = ∅, and such that
I and J have no common differences, that is i1 − i2 6= j1 − j2 for all i1, i2 ∈
I, j1, j2 ∈ J . If this is the case then the map I × J → I + J, (i, j) 7→ i+ j is
a bijection. We can compute the following:

hI(Y ) =
∏
i∈I

(Y − ζi) ∈ Fq[Y ]

HJ(X,Y ) =
∏
j∈J

(X − Y · ζj) ∈ Fq[X][Y ]

hI+J(X) = ResY (hI , HJ) =
∏
i∈I

HJ(ζi) =
∏
i∈I

∏
j∈J

(X − ζi+j)

=
∏

(i,j)∈I×J

(X − ζi+j) =
∏
l∈I+J

(X − ζ l) ∈ Fq[X]

hK(X) =
∏
k∈K

(X − ζk) ∈ Fq[X]

hS(X) = hI+J(X) · hK(X) =
∏
l∈I+J

(X − ζ l) ·
∏
k∈K

(X − ζk)

=
∏

s∈(I+J)∪K

(X − ζs) ∈ Fq[X]
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Evaluating the above functions in X = α would require the computation
of {ζi, ζj , ζk|i ∈ I, j ∈ J, k ∈ K} for a total of Õ(max{#I,#J,#K}) opera-
tions, where Õ is uniform over Fq. Since #S = #I ·#J+#K, the minimum
of max{#I,#J,#K} is attained when these sets are of size Õ(

√
S).

Coming back to the evaluation of the kernel polynomial, we let f(·) =
x(·) and take S := {1, . . . , (l − 1)/2}. We obtain the kernel polynomial.

hs(X) =
∏
s∈S

(X − x([s]P ))

Unfortunately, the resultant trick does not work here since

ResY (hI , HJ) =
∏

(i,j)∈I×J

(X − x([i]P )x([j]P )) 6=
∏

(i,j)∈I×J

(X − x([i+ j]P ))

An important result from this paper is the discovery of the elliptical
resultant which allows us to use the construction from above in the context
of elliptic curve. It depends on the existence of biquadratic polynomials for
elliptic curves.

Lemma 3.4 (Biquadratic polynomial for elliptic curves [2, Lemma 4.3]).
Let q be a prime power and let E/Fq be an elliptic curve. There exists
polynomials F0, F1 and F2 in Fq[X1, X2] such that

(X−x(P +Q))(X−x(P −Q)) = X2 +
F1(x(P ), x(Q))

F0(x(P ), x(Q))
X+

F2(x(P ), x(Q))

F0(x(P ), x(Q))

for all P,Q ∈ E such that OE /∈ {P,Q, P +Q,P −Q}

Example. If a curve E is in Montgomery form By2 = x3 + Ax2 + x then
the biquadratic polynomials are

F0(X1, X2) =(X1 −X2)2

F1(X1, X2) =− 2((X1X2 + 1)(X1 −X2) + 2AX1X2)

F2(X1, X2) =(X1X2 − 1)2

We also need to slightly change the way we decompose the set S.

Definition 3.1 (Index system [2, Definition 4.6]). Let I, J be finite sets of
integers.

1. We say that (I, J) is an index system if the maps I × J → Z defined
by (i, j) 7→ i + j, (i, j) 7→ i − j are both injective and have disjoint
images. Then I + J and I − J are both in bijection with I × J .

2. If S is a finite subset of Z, then we say that an index system (I, J) is
an index system for S if I + J and I − J are both included in S.
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We write I ± J for the union of I and J .

Now let P ∈ E be a point of order n and let (I, J) be an index set such
that I, J, I+J, I−J do not contain any element of nZ. The elliptic resultant
EJ(X,Z) ∈ Fq[X][Z] can now be defined as

EJ(X,Z) =
∏
j∈J

F0(Z, x([j]P ))X2 + F1(Z, x([j]P ))X + F2(Z, x([j]P ))

We use this formula along with ∆I,J = ResZ(hI(Z), DJ(Z)) ∈ Fq[X] and
DJ(Z) =

∏
j∈J F0(Z, x([j]P )) ∈ Fq[Z], to compute hI±J(X) ∈ Fq[X]. In-

deed,

hI±J(X) =
∏

(i,j)∈I×J

(X − x([i+ j]P ))(X − x([i− j]P ))

=
∏
i∈I

∏
j∈J

(
X2 +

F1(x([i]P ), x([j]P ))

F0(x([i]P ), x([j]P ))
X +

F2(x([i]P ), x([j]P ))

F0(x([i]P ), x([j]P ))

)

=

∏
i∈I EJ(X,x([i]P ))∏

i∈I
∏
j∈J F0(x([i]P ), x([j]P ))

=

∏
i∈I EJ(X,x([i]P ))∏
i∈I DJ(x([i]P ))

=
ResZ(hI(Z), EJ(X,Z))

∆I,J

Therefore, using the following sequence of computations, we can evaluate
hI±J(X) in α.

hI(Z) =
∏
i∈I

(Z − x([i]P )) ∈ Fq[Z]

DJ(Z) =
∏
j∈J

F0(Z, x([j]P )) ∈ Fq[Z]

∆I,J = ResZ(hI(Z), DJ(Z)) ∈ Fq
EJ(Z) =

∏
j∈J

F0(Z, x([j]P ))α2 + F1(Z, x([j]P ))α+ F2(Z, x([j]P )) ∈ Fq[Z]

R = ResZ(hI(Z), EJ(Z)) ∈ Fq

hI±J =
R

∆I,J
∈ Fq

hS\(I±J) =
∏

k∈S\(I±J)

(α− x([k]P )) ∈ Fq

hS = hS\(I±J) · hI±J ∈ Fq

We can observe that computing hS only requires computing x([l]P ) for
l ∈ I ∪ J ∪ (S \ (I ± J)). The same complexity bound from above also
applies.
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Next, we show how to actually compute the kernel polynomial ψ(X)
using the above calculations. In order to actually compute the kernel poly-
nomial of an l-isogeny φ : E → E′, we set P a generator of kerφ and
S = {1, 3, . . . , l − 2}. With b = b

√
l − 1/2c, b′ = b(l − 1)/4bc, we define the

index system for S as

I = {2b(2i+ 1)|0 ≤ i < b′}, J = {1, 3, . . . , 2b− 1}

We can now compute ψ using the above.

ψ(X) = hS(X) =
∏
s∈S

(X − x([s]P ))

Example. If our elliptic curves are given in Montgomery form E : y2 =
x3 + Ax2 + x, we can evaluate the isogeny φ : E → E/G using the above,
where G is a finite group of E generated by a point P . Costello and Hisil
showed in [8] that we can represent the curve as

φ : (X,Y ) 7→ (φx(X), c0Y φ
′(X))

where c0 =
∏l/2
s=0 x([s]P ), and

φx(X) = X

l∏
s=0

x([s]P )X − 1

X − x([s]P )

We see that

φx(X) =
X l · hS(1/X)

hS(X)2
, where S = {1, 3, . . . , l − 2}

Therefore, we only need to apply the formulas twice.

This completes the presentation of the new method for computing kernel
polynomials. We conclude by mentioning that for now, the Õ(

√
l) upper

bound on the number of operation required is the lowest known. If this
bound were to be optimal, it would be interesting to prove. Otherwise, even
a theoretical lower bound would be useful, which is what we will show in
the rest of the report.
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Chapter 4

Algebraic Complexity &
Computation Machines

In this chapter, we will introduce some theory concerning abstract compu-
tation machines. These machines are useful because they allow us to model
circuits performing calculations in an algebraic setting. Moreover, they of-
ten exhibit interesting properties which can be exploited using theory from
many fields including analysis, topology and algebraic geometry. They can
also be used to prove a certain lower bounds on the number of elementary
operations required to compute a formula, as we will demonstrate in the
following chapters.

This chapter only presents the basic definitions of such machines. The
main result we are interested in is the Canonical Path Theorem 4.2. Given
a certain machine capable of solving a decision problem, in certain settings
this theorem proves the existence of a polynomial vanishing exactly over the
decision set. It will be indispensible to prove the results from Chapter 5 and
Chapter 6.

Unless stated otherwise, all results and definitions and results in this
chapter are taken from Complexity and Real Computation, Chapter 2: Defin-
initions and First Properties of Computation [4].

Definition 4.1 (Finite dimensional machine [4, Definition 1 on p. 40]). Let
K be a field. A finite-dimensional machine M over K consists of a finite
directed graph with four types of nodes: input, computation, branching,
output. The unique input node has no incoming edges and only one outgoing
edge. All other types of nodes may have possibly several incoming edges.
Computation nodes have only one edge and branching nodes have exactly
two, depending on a YES/NO result.

The machine also has three spaces: an input space IM , an state space SM
and an output space OM . These are all subsets of Kn,Km,K l respectively
for n,m, l positive integers.

23
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Associated to each of these nodes of the graph are maps of these spaces
and next node assignments.

• an input node has a linear map I : IM → SM and a unique next node
β1.

• a computation node ν has a computation map which is a rational
polynomial gν : SM → SM and a unique next node βν .

• a branch node has a branching function which is a non-zero polynomial
function hν : SM → K. The next node along the YES edge, β+

ν is
associated with the condition hν(z) = 0 and the next node along the
NO outgoing edge, β−ν with hν(z) 6= 0.

• an output node ν has an associated linear map Oν : SM → OM and
no next node.

Figure 4.1 is an example of such a machine. It solves the decision prob-
lem 5.5 from Chapter 5, deciding whether z ∈ {1, . . . , k}. In it, the input
node is red, the computation nodes are blue, the output nodes are black,
and the branch nodes are black. The input space IM is C3, the output space
OM is {Yes, No}, and its state space is C4.

Input (k, htZ(k), z)

j ← 1

z
?
= j

Output Yes j ← j + 1 j
?
= k + 1

Output No

Yes No

Yes

No

Figure 4.1: Finite-dimensional machine deciding the Twenty Questions
problem

Given a machine M we can define a function which can execute it, by
operating on the machine’s nodes and state. We call it the computing en-
domorphism.
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Definition 4.2 (Computing endomorphism [4, 2.2 on p. 44]). Let K be a
field, and and M a machine over K. Let N = {1, . . . , N} be the set of
nodes with 1 being the input and N the output node. We call the space of
node/state pairs N ×S the full state space of M . Associated with M is the
natural computing endomorphism:

H : N × S → N × S

of the full state to itself. It maps a node/state pair (ν, x) to (ν ′, x′) deter-
mined by the graph of M and its associated maps.

Described explicitly, we define next node assignments and computation
maps for each node ν ∈ N . Let βν = N for ν = N , and gν(x) = x for
ν = 1, N, or a branch node. Let B ⊂ N be the subset of branch nodes of
M and C = N \ B the computation nodes. Then

H(ν, x) =(βν , gν(x)) for ν ∈ C

H(ν, x) =

{
(β−ν , gν(x)) if hν(x) = 0

(β+
ν , gν(x)) if hν(x) 6= 0

for ν ∈ B

This map can be iterated to simulate an execution of the machine, since
each step of the computation is an application of this map.

The next definition pertains to the time required to execute the machine
on certain inputs, and define the input-output map which is the function
representing the machine.

Definition 4.3 ([4, 2.2 on p. 44]). Let x ∈ IM and let x0 = I(x) ∈
SM . The initial point z0 = (1, x0) ∈ N × S generates the computation
z0, z1, . . . , zk, . . .. It is the orbit of z0 under iterates of H.

z0 = (1, x0)

z1 = (ν1, x1) = H(z1)

...

zk = (νk, xk) = H(zk−1)

Let πN : N × S → N be the projection of the full state space onto N .
Then the sequence of nodes

ν0 = 1, ν1, . . . , νk . . . where νk = πN (zk) for k = 0, 1, . . .

is called the computation path γx traversed by input x.
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The computation halts if there is a time T such such that zT = (N, u)
for some u ∈ S. If such T exists, the finite sequence (z0, z1, . . . , zT ) ∈
(N × S)T+1 is called a halting sequence and the finite sequence of nodes
(ν0, ν1, . . . , νT = N) ∈ N T+1 is a halting path traversed by x.

The halting-time function TM (x) is the least T such that M halts on
input x in time T . If T does not exists, we define TM (x) =∞.

The input-output map ΦM is defined as

ΦM (x) = O(xT ) ∈ OM

whenever T exists.
The halting set of M is ΩM and is the set of all inputs on which M halts.

ΩM = {x ∈M |TM <∞}

Thus TM : ΩM → Z+ and ΦM : ΩM → OM .

We can suppose that our machine is in the particular following form. It
is actually equivalent to the above definition [4, Proposition 2, Section 2.3].

Definition 4.4 (Normal form [4, 2.3 on p. 48]). A machine M over K as
defined above is in normal form if we assume:

• the set of nodes N is {1, . . . , N}, where 1 denotes the input node, and
N denotes the output node.

• iterates of the computing endomorphism H are always defined on an
initial point z0 = (1, I(x)) for x ∈ I.

• all branch nodes are standard, that is, that hν(z) = z1 for each branch
node ν and z ∈ S. This means that it outputs the first coordinate of
z.

The first two conditions do not restrict our previous definition. For the third,
we notice we can transform the machine M to a machine M ′ also over K
such that ΦM = ΦM ′ , SM ′ = K×SM . Therein, we modify each branch node
ν by inserting a computation node ν ′ before it, with gν′(y0, y) = (hν(y), y).
We then replace ν by a standard branch node.

Given this new form, we can formulate some more definitions which make
branching conditions within the machine easier to manipulate algebraically.

Definition 4.5. Let M be a machine in normal form over K. Let x ∈ IM
and let z0, z1, . . . , zk, . . . be a computation with initial input point z0 =
(1, I(x)) and zk = (νk, xk) = Hk(1, I(x)) for k = 0, 1, . . ..
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Let γ(= γx) be the computation path ν0 = 1, ν1, . . . , νk, . . . and let γ(k)
be the initial computation path (ν0, ν1, . . . , νk) ∈ N k+1 of γ of length k. The
initial path set is

Vγ(k) = {x′ ∈ IM |γx′(k) = γ(k)}

It is the set of points in the input space whose computation paths coincide
with γ for the first k steps.

At each step k in the path γ, M evaluates a rational map

Gγ(k) : IM → S

defined by Gγ(k) = gνk ◦ . . . ◦ gν0 ◦ I the composition of the computation
maps along the initial path γ(k) with I. For x ∈ Vγ(k) we have Gγ(k)(x) =

xk+1 = πSH
k+1(1, I(x)) where πS : N × S → S is the projection onto S.

At each branch step k in the path γ, M evaluates the step-k branching
function

fγ(k) : I → R

defined by fγ(k) = π1 ◦ Gγ(k) where π1 : S × S is the projection onto the
first coordinate. When K is a field, fγ(k) may be a rational function or a
polynomial.

Finally, we define the left and right branching conditions along the path
γ(k).

Lγ(k) = {fγ(k′)|k′ < k, k′ is a branch step in γ, νk
′+1 = β−(νk

′
)}

Rγ(k) = {fγ(k′)|k′ < k, k′ is a branch step in γ, νk
′+1 = β+(νk

′
)}

These are the sets of branching functions which, on input x branch left on
equality, and right on inequality respectively.

We can define

Vγ(k) = {x ∈ IM |f(x) 6= 0, g(x) = 0, f ∈ Lγ(k), g ∈ Rγ(k)}

which is the set of all inputs which follow the same path as x.

4.1 Canonical Path Construction

In this section we present the Canonical Path Theorem. We use in the next
chapters to extract a rational polynomial from a decision machine which
vanishes only on the decision set.

We must assume that K is an infinite unordered field.
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Let M be a machine over K and let γ = ν0, ν1, . . . , νk, . . . be a computa-
tion path of M . To each branch step k in γ, there is an associated rational
branching function fγ(k) evaluated by M . A branch step k is exceptional
if fγ(k) is 0 on Vγ(k). These are the branches on which for an input from

Vγ(k), fγ(k) evaluates to 0 and branches right. We have νk+1 = β+(νk)
and Vγ(k+1) = Vγ(k). We call the other branch steps nonexceptional. That
is all inputs following the canonical path will go left at that branch and
fγ(k)(x) 6= 0.

Let Bγ = {k|k is a nonexceptional branch step of γ}. This is the set of
all indices of branches at which computation goes left (No).

Definition 4.6 (Canonical path [4, 2.2 Definition 5 on p. 57]). The path
γ is a canonical path of M if Bγ 6= ∅ and for each k ∈ Bγ , νk+1 = β−(νk).
This path is traversed by inputs that always take the No outgoing edge at
nonexceptional branch steps. There is at most one of these for a machine
M .

We recall that a set X ⊂ Kn is Zariski dense if only the zero polynomial
vanishes on X.

Lemma 4.1 ([4, 2.5 Proposition 3 on p. 57]).
We can define the initial path set Vγ as

Vγ = {x ∈ IM |fγ(k)(x) 6= 0 for each k ∈ Bγ} = {x ∈ IM |Fγ(x) 6= 0}

where Fγ =
∏
k∈Bγ fγ(k). Since K is infinite, Vγ is Zariski dense in Kn.

This lemma shows that the condition of K being an infinite field is
necessary. Indeed, if K were finite, then initial path set is also finite, and
therefore not dense.

Theorem 4.2 (Canonical Path Theorem [4, 2.5 Theorem 5 on p. 47]).
Let S ⊂ Kn. Suppose M is a decision machine for S over K and that γ is
its canonical path. If S is not Zariski dense in Kn, then S ∩ Vγ = ∅. Hence

ΦM |Vγ ≡ 0

Fγ|S ≡ 0

That is, the machine when evaluated on Vγ will always output False,
and the function Fγ always evaluates to 0 on the decision set.

To prove this theorem, we must state an essential lemma on Zariski dense
sets.

Lemma 4.3.
Let X ⊆ Kn be dense with respect to the Zariski topology in Kn and
suppose φ : X → K is a rational function. If the image of φ is a finite set,
then it consists of a single point.
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Proof of Theorem 4.2. Suppose S ∩Vγ 6= ∅. Since ΦM |S ≡ 1, there must be
some elements x ∈ Vγ such that ΦM (x) ≡ 1. The image of Φ is the finite
set {0, 1}, and therefore the image of ΦM |Vγ must be the single value 1, by
Lemma 4.3. The set S is the set for which M returns 1, so we must have
Vγ ⊆ S. This implies that S is also Zariski dense.

We are now fully equipped to tackle the next chapter in which we use
these machines to evaluate decision problems. The power of Theorem 4.2 is
that it proves the existence of a polynomial vanishing only on S. This does
not require us the actually define the machine but only suppose it exists!
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Chapter 5

Computing k!

In this chapter, we present the main result from Shub and Smale in “On
the intractability of Hilbert’s Nullstellensatz and an algebraic version of P
vs. NP”[13]. Is states that which states that if computing k! is hard, then
P 6= NP over C.

We begin by recalling the weak form of the Hilbert Nullstellensatz as
well as one of its corollaries.

Theorem 5.1 (Hilbert Nullstellensatz (weak)).
Every maximal ideal in the polynomial ring R = C[x1, . . . , xn] has the form

(x1 − a1m. . . , xn − an)

for some a1, . . . , an ∈ C.

Corollary 5.1.1.
Given complex polynomials f1, . . . , fl : Cn → C of degree di, for i = 1, . . . , l,
there exists z ∈ Cn such that fi(z) = 0 for all i, if and only if, there also
exists polynomials g1, . . . , gl : Cn → C for i = 1, . . . , l, such that

n∑
i=1

gifi = 1

We are actually more interested in the latter, as we can use it to define
two computation problems.

Problem 5.2 (Effective Hilbert Nullstellensatz).
Given complex polynomials f1, . . . , fl : Cn → C, find the polynomials
g1, . . . , gl : Cn → C such that

n∑
i=1

gifi = 1

31
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Problem 5.3 (Decisional Hilbert Nullstellensatz).
Given complex polynomials f1, . . . , fl : Cm → C of degree di, for i = 1, . . . , l,
decide if there exist z ∈ Cm such that fi(z) = 0 for all i.

Both these problems are believed to be intractable, that is hard to com-
pute in polynomial time. No proof exist though so we must formulate it as
a conjecture, which we believe is true.

Conjecture 5.4 (Intractability of the Decisional Hilbert Nullstellensatz).
There is no polynomial time algorithm over C which solves the Decisional
Hilbert Nullstellensatz 5.3.

It was proved in [3] that this decision problem is NPC-complete, and
therefore proving that it is in PC would prove that PC = NPC. Or in a
different form

PC 6= NPC ⇐⇒ Conjecture 5.4 is true

5.1 Twenty Questions

Twenty Questions is originally a spoken parlor game popular in the 19th
century. One player chooses an object or subject that the others must guess,
by asking only questions with a yes/no answer. By asking 20 questions, one
could theoretically decide what the subject is from a set of 220 possibilities.

The following problem is given in [13] with a similar idea in mind.

Problem 5.5 (Twenty Questions (C)).
The Twenty Question over C is the following decision problem.

input: (k, ht(k), z) ∈ N× N× C
decide: z ∈ {1, 2, . . . , k}

where ht(k) := b log kc.

In Chapter 4, we gave an example of a machine solving this problem in
an unordered field. It must check every possibility and therefore runs in time
O(k). If the field is ordered though, we can use a binary search algorithm
in time O(ht(k)).

We first introduce a slightly broader decision problem (Y, Y yes) as follows
Define Y := C∞ as our alphabet and let our language be

Yyes :=

∞⋃
k=1

{
(k, ht(k), z1, . . . , zht(k), 0, . . .) : z1 ∈ {1, 2, . . . , k}

}
The embedding of 20 questions into (Y, Y yes) becomes:

(k, ht(k), z) 7→ (z,ht(k), z, 1, . . . , 1, 0, . . .)

where the number of ones is ht(k)− 1.
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Lemma 5.6 ([4, 7.3 Lemma 6 on p. 137]).
The (Y, Y yes) decision problem is in NPC.

Proof. We first consider an input/witness pair x, ω ∈ Y × Y given by:

x := (u1, u2, z1, . . . , zn) , ω := (w0, . . . , wn−1, v0, . . . , vn−1, y0, . . . , yn−1) .

Such a witness is an element of the alphabet Y of size polynomial in the
size of the input. It is given to a predicate R(x, ω) which indicates whether
x ∈ Y yes or not. More precisely, the witness defines three positive integers
in binary form all strictly less 2n

a =
n−1∑
i=0

2ivi, b =
n−1∑
i=0

2iyi, c =
n−1∑
i=0

2iwi < 2n

and such that
u2 = c, z1 = 1 + a, u1 = z1 + b

If the input is correct, then then n = u2 = ht(k) is a positive integer, and
z1, u1 = k are also positive integers satisfying 1 ≤ z1 ≤ k.

Algorithm 1 explicitly describes this procedure and runs in time cu2 for
some constant c > 0. That is, its runtime is O(log k)) when the input is
correct.

On input x =
(
k,ht(k), z1, . . . , zht(k)

)
∈ Y yes, the machine answers True.

Therefore, the decision problem (Y, Y yes) is in NPC.

Using the framework from Chapter 4, we can establish that there are
machines over C which are able to solve Problem 5.5. We are more inter-
ested though in machines over Z solving Problem 5.7 which is the same as
Problem 5.5 over a different ring.

Problem 5.7 (Twenty Questions (Z)).

input: (k, ht(k), z) ∈ Z+ × Z+ × Z
decide: z ∈ {1, 2, . . . , k}

where ht(k) := b log kc.

The first important tool which we state here is used for the proof of
Theorem 5.10. We will also use it in the next section.

Proposition 5.8 (Elimination of Constants [4, 7.4 Proposition 9 on p. 136]).
LetK ⊂ L be fields whereK ⊂ Q. Let (Y, Y yes) be a decision problem solved
by a machine M over L. Then there is a machine M ′ over K solving the
restriction of (Y, Y yes) to K and a constant c ∈ N such that

TM ′(y) ≤ (TM (y))c for all y ∈ Y ∩K∞
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Algorithm 1: Verify Twenty Questions Questions

Input: element x := (u1, u2, z1, . . . , zn) ∈ Y
witness ω := (w0, . . . , wn−1, v0, . . . , vn−1, y0, . . . , yn−1) ∈ Y

Output: x
?
∈ Y yes

1 Check u2 is a positive integer by addition of 1s
2 Check size of x is u2 + 2 and size of ω is 4u2
3 n← u2
4 Check wn−1 ≡ 1 // ht is correct

5 Check u1 ≡
∑n−1

i=0 2iwi // u2 ≡ ht(u1)
6 for i = 0, . . . , n− 1 do
7 Check wi(1− wi) ≡ 0 // all wis are 0 or 1

8 Check vi(1− vi) ≡ 0 // all vis are 0 or 1

9 Check yi(1− yi) ≡ 0 // all yis are 0 or 1

10 end

11 a←
∑n−1

i=0 2ivi

12 b←
∑n−1

i=0 2iyi // a, b are positive integers ≤ 2u2

13 Check z1 ≡ 1 + a // z1 is a positive integer ≥ 1
14 Check u1 ≡ z1 + b // z1 is a positive integer ≤ u2
15 if all Check pass then return >
16 else return ⊥

It states that solving a problem in a subfield requires only polynomially
more time than solving it in the original field.

The following theorem is not directly applied in this chapter, but is
required for the proof of Proposition 5.8. We present it for completeness.

Definition 5.1 (Witness). Let f ∈ Q[t1, . . . , ts].

A witness w ∈ Qs
for f satisfies the property:

f(w) = 0 =⇒ f ≡ 0

The definition of a witness alone is not particularly useful without the
following theorem proving the existence of one under some condition.

Theorem 5.9 (Witness Theorem [4, 7.3 Theorem 4 on p. 129]).
Let F (x, t) = F (x1, . . . , xr, t1, . . . , ts) be a polynomial in r+ s = n variables
with coefficients in Z and let Fx(t) ∈ Q[t1, . . . , ts] be defined by = F (x, t)
for each x ∈ Qr

. If N ∈ N satisfies

logN ≥ 4nτ2 + 4τ, τ = τ(F )

Then for all x ∈ Qr
, there exists an algebraic number w1 over the set{

2N , xN1 , . . . , x
N
r

}
such that the point w = (w1, . . . , ws), with wi = wNi−1 for

i = 2, . . . , s, is a witness for Fx.
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Finally, we can state the following theorem which bounds the time re-
quired to decide Problem 5.7 over Z by the time required to decide Prob-
lem 5.5 over C.

Theorem 5.10 ([4, 7.5 Theorem 6 on p. 139]).
If PC = NPC, then Problem 5.7 (twenty questions over Z) is tractable.

Proof. By Lemma 5.6, (Y, Y yes) is in NPC and by hypothesis it is in PC.
Therefore, there is a machine M which decides NPC in time O((log k)c).
Since we embed twenty questions into (Y, Y yes), the restriction of the ma-
chine M to twenty questions over C also decides this latter problem in time
O((log k)c). Finally, by the Elimination of Constants Proposition 5.8, there

is a machine M ′ which decides twenty questions over Z in time O((log k)c
′
).

5.2 Computing k!

In this section we show that a machine M which solves Twenty Questions
over Z in time O((log k)c) actually computes the value k! as an intermediary
step.

We first formalize the meaning of computing a value in a defined amount
of time.

Definition 5.2 (Cost of computation [4, p. 126]). Let m ∈ Z and let
x0, x1, . . . , xl be a computation of m of length l, where x0 = 1, xl = m.
For all k, 1 ≤ k ≤ l there are integers i, j, 0 ≤ i, j < k such that xk = xi ◦ xj ,
where ◦ is an addition, subtraction or multiplication operation.

Define τ : Z→ N by letting τ(m) be the minimum length of a computa-
tion of m.

We can also extend this definition to polynomials in several variables.

Let G ∈ Z[t1, . . . , tn] and consider the finite sequence

(u0 = 1, u1 = t1, . . . , un = tn, un+1, . . . , un+l = G)

where for n < k ≤ n+ l, we have uk = v ◦ w for some v, w ∈ {u0, . . . , uk−1}
τ(G) is the minimum length of such a sequence.

A simple bound on τ for integers is the following.

Proposition 5.11 ([4, 7.1 Proposition 1 on p. 126]).
For all m ∈ Z+ we have

τ(m) ≤ 2 log(m)
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Proof. This is trivial using a double and add algorithm, since m can be
written as:

m =

b log(m)c∑
i=0

mi2
i

where m = (m0, . . . , b log(m)c).
The 2is are all computed using b log(m)c + 1 multiplications, and we

then use at most b log(m)c+ 1 additions to obtain m.

This brings us to wonder about the following problem.

Problem 5.12 (Is k! ultimately easy to compute?).
Does there exists a constant c > 0 such that

τ(k!) ≤ (log k)c for all k ∈ Z+

This problem can be rephrased using the following definition.

Definition 5.3 ((ultimately) easy to compute sequences). Given a sequence
of integers ak, we say that ak is easy to compute if there is a constant c such
that τ ≤ (log k)c for all k > 2.

It is hard to compute otherwise.
A sequence ak is ultimately easy to compute if there are nonzero integers

mk such that the sequence mkak is easy to compute.
It is ultimately hard to compute otherwise.

We can now state and prove the main result from [13].

Theorem 5.13 ([4, 7.1 Theorem 2 on p. 126]).
If the sequence k! is ultimately hard to compute, then PC 6= NPC.

Since it is believed to be hard to show that PC 6= NPC, it would imply
that finding a proof showing the hardness of computing k! is also hard itself.

Before proving Theorem 5.13 we need another tool.

Lemma 5.14.
Let f ∈ Z[t0, t1, . . . , tm] have degree d.

If f is zero on every integer point of the cube in Rm+1 centered at
(0, . . . , 0), then f ≡ 0.

Proof. By induction on m. Let m = 0 and f ∈ Z[t] be of degree d. Then if
f(k) = 0, k ∈

{
−bd+1

2 c, . . . , 0, . . . , b
d+1

2 c
}

, f would have d + 1 zeros, which
is impossible, so f ≡ 0.

Suppose the statement is true for m − 1 and let f ∈ Z[t0, . . . , tm] be of
degree d.

We can consider f over Z[t0][t1, . . . , tm], and by evaluating it in
t0 ∈

{
−bd+1

2 c, . . . , b
d+1

2 c
}

, we obtain a polynomial over Z[t1, . . . , tm].
Applying the induction hypothesis over the latter wields the result.
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Finally, we can use all these tools to prove the main theorem of this
chapter.

Proof of Theorem 5.13. We show the contrapositive, that is

PC = NPC =⇒ k! is ultimately easy to compute

By Theorem 5.10, Twenty Questions over Z only is tractable. This
implies there is a machine M over Z which solves the decision Problem 5.7
time < (log k)c. Using the Canonical Path Theorem 4.2, there exists a
polynomial F over the input variables k, ht(k), t, which vanishes on the
decision set {(k, ht(k), t) : k ∈ N, t ∈ {1, . . . , k}}

For each k, we consider Fk ∈ Z[t] where Fk(t) = F (k,ht(k), z). This
polynomial thus vanishes on {1, . . . , k}, and τ(Fk) ≤ (log k)c, since the
machine M evaluates F in that same amount of time. The degree of Fk
is bounded by 2τ(Fk) since that is the maximum number of operations a
machine could perform in time τ(Fk). Since it is not identically zero, the
contrapositive of Lemma 5.14 asserts there is an integer l such that Fk(l) 6=
0 and |l| ≤ 2τ(Fk). We take l to be minimal with this property. Using
Lemma 5.11 and the above, we have

τ(l) ≤ 2 log (l) ≤ 2τ(Fk) ≤ 2(log k)c

Computing Fk(l) can be done by computing l and then computing Fk
evaluated at l. Therefore,

τ(Fk(l)) ≤ τ(l) + τ(Fk) ≤ 3(log k)c

We next argue that Fk(l) must contain k! as factor by checking two
possibilities (l /∈ {1, . . . , k} by construction).

l > k: By minimality of l, Fk would be zero on {1, . . . , l − 1} and then

Fk(t) =
l−1∏
i=1

(t− i)g1(t), for some g1 ∈ Z[t]

l ≤ 0: If this is the case then Fk would be zero on {l + 1, . . . , k} and then

Fk(t) =

k∏
i=l+1

(t− i)g2(t), for some g2 ∈ Z[t]

The evaluation of Fk in l yields a sequencemk = Fk(l)/k! for each k, and thus
the sequence mkk! = Fk(l) is easy to compute since τ(Fk(l)) ≤ 3(log k)c,
which implies that k! is ultimately easy to compute.
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Chapter 6

Kernel Polynomials &
PC vs. NPC

In this chapter, we will try to use a similar construction as Chapter 5 to prove
that an easy evaluation of the kernel polynomial would imply that PC =
NPC. This link might seem far fetched, but to understand our motivation
for pursuing this route we must look back to Chapter 3. Indeed, if we take
the special case of the polynomial

hS(X) =
∏
s∈S

(X − s)

with S = 1, . . . , k, P = 1 and f(x) = x, then we notice that evaluating hS in
0 gives ±k!. This motivated our research in adapting the twenty questions
construction to elliptic curves over C.

6.1 Twenty Questions for Elliptic Curves

We start by formulating the Twenty Questions Problem 5.5 for elliptic curves
over C. Throughout, we consider E to be an elliptic curve over C, given in
Weierstrass form with coefficients {ai}6i=1.

Problem 6.1 (Twenty Questions (Elliptic Curve)).

input: (P,ht(P ), Q) ∈ E × N× E
decide: Q ∈ 〈P 〉 \ OE

where ht(P ) := b log ord(P )c and P 6= OE .

39
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In this chapter, we consider machines as defined in Chapter 4, and ex-
plain how they handles elliptic curves. First of all, the input to the machine
must contain {ai}6i=1 which are the coefficients of the curve E we are working
on. Next, a point P ∈ E is simply a tuple of coordinates which our machine
can simply store independently. Algorithm 3 in the appendix shows how
the point addition ⊕ is computed when no point is the point at infinity. If
the two points sum to infinity, then the machine will branch and continue
accordingly. We notice that this function takes constant time. In our anal-
ysis, we will be concerned with the number of point additions we perform.
We therefore consider the big-O notation OE (·) which counts the number
of elementary operations, as well as the number of point additions.

Once again, we consider a broader decision problem (Y, Y yes) in which
we embed twenty questions.

Let the alphabet be Y := C∞. For all curves E over C defined by
coefficients {ai}6i=1 and all points P ∈ E \ OE , and all Q ∈ 〈P 〉 \ OE we
define an element of Y yes as

Y yes, E, P,Q :=
(
{ai}6i=1 , x(P ), y(P ), ht(P ), x(Q), y(Q), x1, . . . , xht(P ), 0, . . .

)
The last variables are added in order to set the size of the input to

O(ht(P )).
The decision set is then

Y yes :=
⋃
E/C

⋃
P∈E\OE

⋃
Q∈〈P 〉\OE

Y yes, E, P,Q

and the embedding from Problem 6.1 into (Y, Y yes) is

(P,ht(P ), Q) 7→
(
{ai}6i=1 , x(P ), y(P ), ht(P ), x(Q), y(Q), 1, . . . , 1

)
where there are ht(P ) ones.

As we did previously, we provide an algorithm verifying the decision
problem (Y, Y yes) in polynomial time.

Theorem 6.2.
The decision problem (Y, Y yes) is in NPC.

Proof. Given an input/witness pair (x, ω) given by

x :=
(
{ai}6i=1 , xP , yP , u1, xQ, yQ, x1, . . . , xn

)
, ω := (k1, . . . , kn)

Algorithm 2 will verify in time OEC(ht(P )) that x belongs to the decision
set Y yes.

The witness simply represents the discrete log of Q in base P written in
binary, and it’s length is clearly polynomial in the size of the input. The
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algorithm then performs a double-and-add subroutine to compute [k]P and
verifies it equals Q. Since the points P,Q are not the points at infinity, and
Q ∈ 〈P 〉, the algorithm will decide ⊥ whenever it encounters the point at
infinity during the computation of [k]P . This simplifies our algorithm since
we don’t need to consider them at all. However, the original double and add
algorithm initializes the point R to the point at infinity. In order circumvent
this and prevent the failure on line 14, we initialize R to N the first time we
enter the condition kj = 1.

Algorithm 2: Verify Twenty Questions Questions (Elliptic Curve)

Input: element x :=
(
{ai}6i=1 , xP , yP , u1, xQ, yQ, x2, . . . , xn

)
∈ Y

witness ω := (k1, . . . , kn) ∈ Y
Output: x

?
∈ Y yes

1 Check u1 is an integer by addition of 1s
2 Check size of x is u1 + 11 and size of ω is u1
3 n← u2
4 Check y2P + a1xP yP + a3yP ≡ x3P + a2x

2
P + a4xP + a6 // P ∈ E

5

6 Check y2Q + a1xQyQ + a3yQ ≡ x3Q + a2x
2
Q + a4xQ + a6 // Q ∈ E

7 (xN , yN )← (xP , yP )
8 for i = 1, . . . , n do
9 Check ki(1− ki) ≡ 0 // all kis are 0 or 1

// handle all summations to the point at inifinity as

failures and return ⊥
10 if ki ≡ 1 then

11 if i ≡ 1 ∨ ki
∏i−1

j=1(1− kj) ≡ 1 then

// the kj = 0 for j = 1, . . . , i− 1 and ki = 1
12 (xR, yR)← (xN , yN )

13 else
14 (xR, yR)← ⊕(xR, yR, xN , yN)

15 end

16 end
17 (xN , yN )← ⊕(xN , yN , xN , yN)

18 end
19 Check xR ≡ xQ ∧ yR ≡ yQ
20 if all Check pass then return >
21 else return ⊥
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Our main result from this chapter will consist of showing that if it is true
that PC = NPC, then a machine M solving Twenty Questions (EC) in time
OE ((log ordP )c) actually produces and evaluates a polynomial divisible by

ordP−1∏
i=1

(X − x ([i]P )) .

This latter polynomial is very similar to the kernel polynomial, and we
can adapt the result to obtain a result applicable to it, by redefining our
Problem 6.1 to decide if the point Q is in {P, [2]P, . . . , [(l − 1)/2]P}.

We first adapt a few definitions from Chapter 5.

Definition 6.1 (Cost of computation in Elliptic Curves). Let P ∈ E be a
point of the elliptic curve E, and k ∈ N and integer.

Let (
u−7 = a1, . . . , u−2 = a6,

u−1 = x(P ), u0 = y(P ),

u1 . . . , , ul−1,

ul = x([k]P ), ul+1 = y([k]P )
)

be a computation of [k]P of length l + 9.
For all 1 ≤ k ≤ l+1 we have, uk = v◦w for some v, w ∈ {u−7, . . . , uk−1},

and some ◦ ∈ {+,−,×, /}.
τ([k]P ) is the minimum number l of such a computation.
The same is valid for polynomials F ∈ C[t1, . . . , tn]. We consider the

computation sequence (
u−7 = a1, . . . , u−2 = a6,

u−1 = x(P ), u0 = y(P ),

u1 = t1, . . . , un = tn,

un+1, . . . , un+l = F
)

where for n < k ≤ n+ l, we have uk = v ◦w for some v, w ∈ {u−7, . . . , uk−1}
and ◦ ∈ {+,−,×, /}.

τ(F ) is the minimum number l of such a computation.

Proposition 6.3.
For all P ∈ E and all k ∈ {1, . . . , ordP − 1}, we have

τ([k]P ) = OE (log k)

Proof. This is trivial using a double and add algorithm.

This now allows us to formulate our final theorem.
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Theorem 6.4.
Let P ∈ E. If

ψ(X) =

ordP−1∏
i=1

(X − x ([i]P ))

is hard to evaluate for all x ∈ C, then PC 6= NPC.

Proof. Suppose PC = NPC.

Then there exists a machine M over C which solves the decision problem
(Y, Y yes) in time OE ((htP )c) for some c > 0, since it is in NPC.

Because PC = NPC, the restriction of this machine to the variables
{a1, . . . , a6, xP , yP ,ht, xQ, yQ} then also solves twenty questions for elliptic
curves in timeOE ((htP )c), by the Elimination of Constants Proposition 5.8.
By the Canonical Path Theorem 4.2, there exists a polynomial F in several
variables in C which vanishes only on the decision set.

We consider the polynomial

GC(X) = F (a1, . . . , a6, x(P ), y(P ), htP,X, yQ)

where C := (a1, . . . , a6, x(P ), y(P ),htP, x, yQ).

By construction, GC vanishes on {x(P ), x([2]P ), . . . , x([ordP − 1]P )}
whenever the input is in the decision set. We obtain the univariate polyno-
mial

GC(X) = ψ(X)g(X), for some g ∈ Q[C][X].

The polynomial g is over Q[C] since the machine performs elementary oper-
ations on the variables in C.

We have τ(ψ) ≤ τ(GC) since the machine must M must compute ψ
during the computation of GC . This implies that τ(ψ) = OE ((ht(P ))c).

Therefore, for any X ∈ C, τ(ψ(X)) = OE ((ht(P ))c), and we conclude
that the computation of the kernel polynomial is easy.

This proves the contrapositive of the theorem.

By the preceding theorem, we obtain our final result. Unless PC = NPC,
we conclude that the evaluation of the kernel polynomial of an isogeny can
not be done in time less that logarithmic in its degree.
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6.2 Further work

Unfortunately, the main result does not translate directly to finite fields, as
many arguments we use depend on the base field being of infinite charac-
teristic. The Canonical Path Theorem 4.2 for example, requires the initial
path set to be Zariski dense. This does not mean however that it cannot be
done.

We could for instance look into the Néron-Tate height to try and adapt
some results to elliptic curves in general. This would require more back-
ground into later chapters of [15], which we hope to do in the future.

Moreover, it seems like Problem 6.1 twenty questions over elliptic curves,
if defined for finite fields, could be solved by an algorithm solving the dis-
crete logarithm. Therefore, instead of connecting the computation of kernel
polynomials to P = NP, we would connect it to discrete log problem which
is also believed to be hard.

There are also many more interesting results from complexity theory
which might be applicable. Indeed, the subject is incredibly vast, and the
research we conducted using [5] and [4] revealed other avenues we could
explore.

It would also be interesting to further pursue the idea of applying this
twenty questions type of argument to a broader class of functions, such
as those described in Chapter 3. These functions are a special case of q-
holonomic functions.

Finally, the impossibility of a superlogarithmic lower bound for evaluat-
ing isogenies does not exclude the possibility of a polylogarithmic bound, so
there may still be room for improvements in that regards.
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Appendix

Algorithm 3: Elliptic Curve Addition Formula

Function ⊕((xP1
, yP1

) , (xP2
, yP2

))
if xP1

≡ xP2
∧ yP1

+ yP2
+ a1xP2

+ a3 ≡ 0 then
// Handle point at infinity

else
if xP1 ≡ xP2 then

λ← 3x2
P1

+2a2xP1
+a4−a1yP1

2yP1
+a1xP1

+a3

ν ← −x3
P1

+a4xP1
+2a6−a3yP1

2yP1
+a1xP1

+a3

else

λ← yP2
−yP1

xP2
−xP1

ν ← yP1
xP2

−yP2
xP1

xP2
−xP1

end
xP3 ← λ2 + a1λ− a2 − xP1 − xP2

yP3
← −(λ+ a1)a3 − ν − a3

return xP3
, yP3

end

47


	Elliptic Curves & Isogenies
	Elliptic Curves

	CSIDH & CSURF
	Hard Homogeneous Spaces
	CSIDH

	CSIDH on the surface

	Computation Bounds for Isogeny Evaluation
	Computing the kernel polynomial in big o tilde of square root of l

	Algebraic Complexity & Computation Machines
	Canonical Path Construction

	Computing k!
	Twenty Questions
	Computing k!

	Kernel Polynomials & P vs. NP
	Twenty Questions for Elliptic Curves
	Further work


